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With the help of quantum-scattering-theory methods and the approximation of the stationary phase,
we propose a one-dimensional quantum-random-walk (QRW) model, which describes for both tunneling
and scattering above the potential, the coherent diffusion of independent particles described by wave
packets in a periodic one-dimensional lattice. The QRW model describes for each lattice cell the time
evolution of modulating amplitudes of two opposite-moving wave packets as they are scattered by
periodic potential barriers. Since the QRW model is a coherent process, interference contributions in
the probabilities bring about strong departures from classical results. For many identical free particles
we obtain the theoretical and graphical Bose and Fermi two-body QRW probability distribution. The
result is generalized to N identical free particles and we obtain the N-body Bose and Fermi QRW proba-

bility distribution.

PACS number(s): 05.40.+j

I. INTRODUCTION

Tunneling diffusion for mesoscopic materials has been
studied extensively [1]. The diffusion coefficient in a sys-
tem of noninteracting electrons, which was first found by
Landauer [2], has been indirectly studied by several au-
thors. In particular, since diffusion and conductivity are
connected by the Einstein relation, the Landauer conduc-
tivity has been a fertile ground to quantum theoretical
calculations [3-5].

It is well known that classical (incoherent) random
walks have been used as simple mathematical models to
study the microscopic theory of diffusion [6,7]. An exam-
ple of quantum-random-walk theory for a single particle
is known in the literature [8]. However, as far as we
know, nobody has found a cokherent random-walk process
in position space for a system of identical free particles.
The main purpose in this paper is to propose a quantum-
random-walk (QRW) model for diffusion of Bose and Fer-
mi free particles in a one-dimensional (1D) periodic lat-
tice. The model is based in the following set of Markovi-
an equations for the amplitudes of moving wave packets,
which are scattered in a periodic lattice:

B[MI,Nt] V'R e?2kM! iv'T
A[(M +1),N7] iVT  VRe i2kMl

A[MI,(N —1)7]
BI(M+DL(N—1)r] |- @D

Here A(MI,N7) and B(MI,N7) are the position- and
time-dependent modulating amplitudes of two wave
packets moving freely in each valley, moving toward the
right and left, respectively. With M an integer number
(0,£1,%2,...), Ml denotes the discrete coordinates of
any midpoint of a valley in the lattice (lattice constant /),
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and with N a positive integer number, N7 denotes the
discrete times at which the centroid of any packet arrives
at the coordinates of a midvalley. The parameter T,
called the jump time, is a fixed time associated with the
scattering process. Be aware that, in this model, Eq (1.1)
describes the amplitudes only at specific discrete coordi-
nates and discrete times. In Eq. (1.1), R and T are the
reflection and transmission coefficients of the microscopic
potential barriers (T +R =1). Depending on the energy
of the particle, walk (1.1) describes both a tunneling or
scattering above the potential diffusion process in a 1D
lattice.

This is a coherent model, with the one-body QRW
probability density P at any midvalley, with coordinates
x =M]I and time t =Nt given, respectively, by (for sim-
plicity we willuse / =1 and 7=1)

P(M,N)=| A4 (M,N)]2+|B(M,N)|*. (1.2)

Since A4 and B are given by the addition of complex num-
bers, we expect in (1.2) to have interference terms which
will produce a strong departure from classical results.

In Secs. II-1V, using the quantum theory of scattering
and the approximation of the stationary phase, a heuris-
tic derivation of the above equations will be given. In
Sec. V, for some specific initial conditions, we obtain the
exact analytic solution for the amplitude equations
A(M,N) and B(M,N). In Sec. VI we find that for a sys-
tem of identical free particles the two-body Bose and Fer-
mi QRW probability distribution is obtained. The result
is generalized to the N free-body QRW Bose and Fermi
probability distribution.

II. MICROSCOPIC DIFFUSION OF AMPLITUDES

Let us consider two arbitrary, opposite-moving, plain
waves incoming upon a symmetric potential barrier at
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the origin. This potential barrier may be though of as the
boundary between two adjacent cells of lattice constant /.
In the stationary state for k =0, the incoming wave func-
tions are given by

aet**  x <0

where a and b are arbitrary amplitudes. From elementa-
ry 1D quantum-scattering theory, the stationary outgoing
solutions are given by

[S“(k)a +S12(k)b]e—ikx y X <0

out — .
YF(x) l[Szl(k)a +S,(k)blet ™ | x>0. 2.2)

Here S;;(k) are the matrix elements of the 2 X2 scattering
matrix S of the barrier at the origin.

Assuming the symmetries and invariance properties of
(1) conservation of probability, (2) time-reversal invari-
ance, and (3) invariance of the potential barrier under
mirror reflections (symmetric about the origin), the S ma-
trix has to be unitary and symmetric, with symmetry
S11 =85, and §{,=S8,,. S can then be parametrized in
the general form [9]

+ikox
ae °

—ikyx
be °

e

0

\I/i:::'c(x,t)z —1/;—77. f_ g(k)e—iw(k)t

or, in short notation,
+ ikox

. ae G(+x,t), x<0
Pi(x,t <0)= k% (2.6)
be "“G(—x,t), x>0,
where we have defined the complex G function as
1 @ —iokye, itk —kg)x
Gxn=—z=[" dkg(ke ik L@

The modulating G (x,¢) function depends on the partic-
ular form of g (k). It is well known, for example, that if
|g(k)|? is a Gaussian, then G (x,?) is a spreading moving
Gaussian [10]. G(x,?) has the property that, if in k
space, |g(k)|? is normalized to 1, then |G (x,#)|? in x
space is also normalized to 1 [Bessel-Parseval relation].
Under time reversal and space reflection G satisfies
G(—x,—t)=G(x,1)*.

It is well known in quantum mechanics [10] that for a
peaked function g(k), the position of the maximum of
the packet [centroid of G (x,?)] is well approximated by
the requirement of the stationary phase [11] evaluated at
k =k,. Using this method of stationary phase for the

+ilk —kg)x

—ilk—ky)x
e 0
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where T'(k) and R (k) are the transmission and reflection
coefficients, respectively. They satisfy T+R =1. The
common phase a(k) may be neglected later on in the
probability, as we will see in Sec. IV.

The above plane waves (2.1) and (2.2) leave the posi-
tions of the particles entirely unspecified. In order to de-
scribe a mass transport phenomenon, we need some local-
ization in position. So, instead of plane waves, we choose
to describe our diffusion model by localized wave packets
which by assumption are scattered only at the cell’s
boundaries in a 1D lattice.

In the general case, the incoming wave packets are
given by

S(k)=elak , (2.3)

+ikx

Wi;:‘c(x,t =____1 fw g(k)e—iw(k)t ae_.k dk x <0
Vo d be~kx |92 x50,
(2.4)

Here w(k)=#k?/2m, and g(k) is an arbitrary peaked
function with spreading Ak, and with the maximum at
k =k, (the average) which is associated with the particle
velocities vy=*%k,/m and energy €,=#w(k,). The in-
coming packets (2.4), which are valid only for negative
times, can be rewritten as

]dk ,

x <0

x>0, (2.5)

two incoming waves in Eq. (2.5), we have the two incom-
ing centroids moving according to the relation
x; =tw'(ky)t ==xtikyt /m (with ¢t <0). If we choose both
incoming centroids to be located exactly at the middle of
their respective lattice valleys x;= F1/2, we have the
same initial time t; = —1Im /2#ik,. Just there, at the mid-
dle of their valleys, the wave functions of the incoming
packets are given exactly by

+ikyx

A(x,-<0,t,-)e G(+x7ti)’ x <0

\I/inc(x,t-)= .
T B (x, > 0,10 *G(—x,t), x>0,

(2.8)
where

A (xi <0,t,)
B(x;>0,1,)

a

Similarly, both outgoing wave packets are given by
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1 o o) [aSll(k)"l'bSu(k)]e—ikx x <0
out L —iolk)t .
V0= [ dkgihre [0Sy (k) +bSp(K)]e +5 | x>0 210

This integral, valid only for positive times, cannot be done unless an explicit model for the S matrix (or the potential
barrier) is given. To avoid this, an approximation will be done. Since g (k) is a sharp-peaked function centered at
k =k, we can proceed to make a Taylor-series expansion of the matrix S(k) around k,; we write

ds

dk, 2.11)

S(k)=S(ky)+ (k—kg)+ -+ .
Next we go one step further in the approximation. Is it possible to make our approximation to zero order? That is,

does S(k)=S(ky)? This will be true only if

|S(ko)|>>|d"S/dkl] . (2.12)

Certainly, Eq. (2.12) is not true for arbitrary values of k,; however, just looking into any graph of the transmission
coefficient |S; |? vs energy in any particular model [10] will convince us that we can find such points in which Eq. (2.12)
holds. Indeed, choosing large values for k,, or points standing about the middle of resonant energies where the
transmission coefficient |S;,(ko)|?=T (k) is almost flat, condition (2.12) is well satisfied. Under this smooth varying

S-matrix condition, and assuming a peaked function g (k), we can approximate the outgoing wave packet (2.10) as

—ikyx

[aS“(ko)+bS12(k0)]e 1

\I/OUt(x, t)z i —_—
¥ [0S, (ko) +bSy,(ky)le 0% | V2r o

or, in terms of the G function, we have

[aSy;(ko)+bSpy(ky)le “O*G(—x,1),

W¥(x,t>0) =~

For the outgoing packets, both centroids will arrive at
the midvalley positions x,= F1//2 at the same time
ty=+1Im /2%iky= —t,; (notice that Wigner’s time delay is
neglected in this approximation). Therefore the outgoing
wave functions at midvalleys will be given by

B(x;<0,t5)e "“G(—x,t;), x <0

\P‘%‘t(x,tf)z +ikgx

A(x,>0,tr)e G(+x,t;), x>0.
f f f

(2.15)

According to (2.14), the relation between the new (outgo-
ing) and old (incoming) modulating amplitudes becomes

B(x;<0,t;,=t;+7)
A(x;>0,t,=t;+7)
S11(ko) Sia(kg)
Sy1(kg) Saylkg)

A (x;<0,¢;)
B(x;>0,t;)

, (2.16)

where we have defined 7, the jump time, as the time for
the round trip 7=2|t;| =1/wo=Im /#k,. Notice that, in
this approximation, at each cell the outgoing packets
have different amplitudes and directions of motion com-
pared with the incoming packets. However according to
(2.15), the outgoing packets have the same form and cen-
troid position (the middle of the valley) as the incoming

f *® g(k)e—iw(k)te

[0S, (ko) +bSy, (ko) le O G(+x,1) ,

x <0
x>0

Fitk—kg)x

dk , (2.13)

x <0
(2.14)
x>0.

ones. Thus in turn these outgoing packets will become
incoming packets for the next scattering process at the
two adjacent barriers, and the whole scattering process
repeats itself. A recursive diffusion process will be car-
ried out this way. Equations (2.16) are the basic recursive
partial difference equations upon which we will build our
quantum-random-walk (QRW) model.

III. QRW ONE-BODY WAVE FUNCTION

In this section we apply the results of Sec. II to a
periodic crystal lattice (Kronig-Penney model), in which
free particles described by wave packets move in the po-
tential valleys, and from each valley to the next by quan-
tum tunneling (or scattering above the potential). As in
Sec. II, for mathematical simplicity, we have the origin at
a potential barrier. In order to discuss our QRW
diffusion model for an arbitrary cell, let us denote cell M
as the valley bounded by two potential barriers at
(M —1)] and MI(M =0, +1, £2, ...). We also shift the
time to ¢t =N, such that for arbitrary multiples (N =0,
1, 2, ...) of the jump time 7, the centroids are located at
midvalley positions. In this proposed QRW model of
diffusion, we generalize the results of Sec. II in such a
way that at every lattice valley M we have both right- and
left-moving packets, each of whose wave function at a
fixed discrete time ¢t =N 7 is given by
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W, (x,N7)=[ A (MI,N7)e "o

+B(MI,NT)e “*|G(x,N7,M) 3.1)

=W (x,N7)+ V¥ (x,N7) . (3.2)
Here the coordinates (MI,N7) denote the cell-position
(M1) and discrete-time (N7) dependence of the modulat-
ing amplitudes 4 and B for right- and left-moving pack-
ets, respectively.

In this QRW model, by assumption, we neglect more
than one cell spreading of the packets. That is, at all
times the wave packets are assumed to be bounded to a
single cell. The function G(x,N7,M) is centered at the
midvalley M, and we assume that G (x, N7,M )70, only if
(M —1)I <x <Ml. Therefore in the QRW model we
neglect the time dispersion of the packets beyond a single
cell of size /. Under this assumption every wave packet
has no overlapping to neighboring cells. This assumption
limits, for short times only, the validity of our solution as
a true Schrodinger wave packet. Clearly this prevents us
from finding, for long times, the correct stationary solu-
tion (Bloch’s wave functions).

The normalization requires

[  ax|G(x,N,M)|*=1
M

cell

and

J  dx|G(x,N,M)>=0. (3.3)
cell=M

The amplitudes 4 and B satisfy, for arbitrary lattice val-
leys M and M +1, the same recursive equations (2.16).
That is, for a scattering at the potential barrier at x =MI,
we have the relations (for simplicity /=7=1 from now
on)

B[M,N +1]
A[M+1,N+1]

A[M,N]

Here the right-hand side at time N has incoming ampli-
tudes for right-moving A(M,N) and left-moving
B(M +1,N) packets. The left-hand side has the corre-
sponding outgoing amplitudes, one jump time later
N +1. S(ky,M) denotes the S matrix associated with the
barrier located at x =M. Notice that for the single fact
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of having the barrier shifted at x =M, the S matrix now
has the mathematical structure [9]

S(ko, M )=US(k,,0)UT
eikoM 0

—ikgM
e 0

0
tikoM

—ik,M
e 0

X S(kyg,0) (3.5)

Therefore the general S matrix located at x =M is

parametrized as

O VT
iv'T VRe oM

Equation (3.4) which for amplitudes has the same
mathematical structure of a Markovian random-walk
process, defines the basic equations of our QRW model.

ialkg)

S(ko,M)=¢ (3.6)

IV. ONE-BODY QRW PROBABILITY

We want the conditional, one-body probability of
finding a particle at an arbitrary lattice cell M. It is con-
ditional because it depends strongly on the initial condi-
tions. Since the packets do not overlap, we can integrate
the one-body probability density for a single W, (x,N)
along a cell M:

PM,N)= [ W, V) 2

=fM!\p;,(x,N)+w;,(x,N)|2dx ) 4.1)
Substituting from Eq. (3.1), we have
P(M,N)=|4(M,N)|*+|B(M,N)|
+ [ J Wi MWy, N)*dx +ee. | . 4.2)

Here the integral is an interference contribution pro-
duced by the total superposition, at the same cell M, of
two packets moving in opposite directions. After some
elementary integrations the explicit value of this integral
is given by

+ - * — * i2kgx M)|?
fM\IIM(x,N)\I/M(x,N) dx=AB fdee |G(x,N,M)|

= AB*expli2fik3t /m) [~ dk g(k)g*(k+2k)e

ifizkokt /m 4.3)

The last integral has two g (k) functions, g (k) centered at k, and the other g (k +2k;) centered at —k,. Since by hy-
pothesis we have a sharp distribution of momenta around k, so that Ak <<k, the two g functions do not overlap in k
space and the integral is negligible. Two wave packets traveling in opposite directions are orthogonal. The only in-
terference will come from packets superposing in the same valley and traveling in the same direction. The final result
for (4.2)is that the total probability at each lattice cell is an incoherent superposition of two wave packets moving in op-

posite directions:
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P(M,N)=|A(M,N)|*+|B(M,N)|?

=P,(M,N)+P_(M,N). 4.4)

So far this looks like a classical result. However, no-
tice that according to Eq. (3.4) both 4 (M,N) and
B (M,N) are made of a coherent superposition of two am-
plitudes, currently traveling in the same direction, but
evaluated at a previous time. This will produce quantum
interference, as we show next. Substituting Eq. (3.4) into
Eq. (4.4), we find

P,.(M,N)=|A(M,N)|?
=TP,(M—1,N—1)+RP_(M,N —1)
+VTR[iA(M—1,N—1)B*(M,N —1)
xe—+—ik02M
P_(M,N)=|B(M,N)|?
=RP,.(M,N—1)+TP_(M+1,N —1)

+VTR [iA*(M,N —1)B(M +1,N —1)
—ikg2(M +1)

+c.c.], (4.5a)

Xe +c.c.]. (4.5b)

The existence of these interference terms makes the
great difference between classical (incoherent) and quan-
tum (coherent) random processes. Notice that if we arbi-
trarily neglect the interference terms in Eqgs. (4.5), we re-
cover the classical (incoherent) correlated walk equations
of Ref. [7], namely

P, (M,N)=TP , (M—1,N—1)+RP_(M,N—1),
(4.6a)
P_(M,N)=RP, (M,N—1)+TP_(M +1,N—1) .

(4.6b)

From these classical (incoherent) equations, the Lan-
dauer diffusion coefficient D, =(vy/)T /2R has been
readily derived [7]. However, in Ref. [8] it was proved
that if the full interference contributions are taken into
account, then we have an additive quantum correction to
the diffusion coefficient D, =(vy/)V'T/R.

V. ONE-BODY QRW ANALYTIC SOLUTION
FOR AN INFINITE LATTICE

The set of finite difference Egs. (3.4) can, in principle,
be solved for any arbitrary set of initial and boundary
conditions. For simplicity we take an infinite lattice, and
choose an initial single wave packet at arbitrary cell m
moving to the right:

A(M,N=0)=8,;,, , B(M,N=0)=0. (5.1)

Given these initial conditions, the solution of Eq. (3.4)
is obtained as follows: we first define the characteristic
functions A(s,N) and B(s,N) by a finite Fourier trans-
form

3385

A(s,N)
B(s,N)

A(M,N)
B(M,N)

I

. (5.2)

M
}5 e 15.

M=—

Neglecting common phases [a(k)] and Fourier trans-
forming Eq. (3.4), we obtain a Markov chain equation

A(s,N) ivVTe® VR
E(S—Zk,N) - ‘fR_eI'Zk iﬁe—i(s—Zk)

X (5.3)

A(s,N—1)
B(s—2k,N—1)|"’

where for simplicity we have dropped the subindex from
ky. From now on, every equation which depends on the
central momentum of the packet will be denoted just by k&

Equation (5.3) is a first-order difference equation in
variable N, and has the formal solution

A(s,N) PGV A(s,0)
Bis—2k,N) | PSRN B —ak,0) | 7 54
where we have defined the P(s, k) matrix as
iVTe® VR
P(s,K)= | R oi2k 11/ T —its—2k) (5.5)

Using the standard methods of linear algebra, we obtain
P(s,k)N=g(s,N)P(s,k)+g(s,N —1)e’? ] . (5.6)

Here the scalar function g(s,N) is the Green’s function of
the problem, and is given by

AN —AN

_ 5.7
. (5.7

g(s,N)=

where A, and A_ are the unitary eigenvalues of the P
matrix, given by

ki=ieike Fib(s, k)

V'1—T cos¥(s —k)
VT cos(s —k)

with tanf8= (5.8)

Substituting Egs. (5.6), (5.7), and (5.1) into Eq. (5.4), we
obtain

Z(S,N) iﬁeis(m +1)
B(s —2k,N) =g(s,N) VR ei @k +sm)
ei(2k +s)
+g(s,N—1) 0 (5.9)
Next, taking the inverse Fourier series
9(M,N)=$f” e " “Mg(s,N)ds , (5.10)
—
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we finally arrive at
AM,N)=iVT M —m —1,N)+e**¢M—m,N—1),
(5.11a)

[(N—M)/2]

Q(M,N +1)=iNei (N —MKk A
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B(M,N)=V'R ¥ M+VQM —m N) . (5.11b)

In Appendix A we explicitly calculate the Green’s func-
tion $(M,N), and the result is given by

(N —j)!

(—1)!'[@]

j=0

(5.12)
N-—-M-=2j | | N+M—2j

|

! !

2 2

This Green’s function is different from zero only if the coordinate M has the same parity as N.
Finally the one-body QRS probability distribution (4.4) then becomes

P(M,N)=T|9(M —1,N)|>*+R|9(M,N)|*>+|9(M,N —1)|*+ [i\/Te —2k@*(M,N —1)9(M —1,N)+c.c.

In Fig. 1 we show an example of the one-body QRW
probability distribution as a function of cell position M,
and compare it with the classical probability distribution
obtained with Egs. (4.6) in Ref. [7]. From Fig. 1 we no-
tice that the most important distinction between QRW
and classical distributions is that the QRW shows the fol-
lowing: .

(a) At any arbitrary time, there are well defined des-
tructive and constructive interference points.

(b) There is an unexpected localization of the probabili-
ty. The probability is conserved, so almost all probability
lost in destructive interference points appears to be con-
centrated in the neighborhood of a single point where the
probability has a big spike. This spike is a consequence
of initially having the particle moving toward the right;
see Eq. (5.1).

(c) The position of this localization overshoots by far

P(X,N)

QUANTUM

CLASSICAL

FIG. 1. Quantum and classical one-body probability distribu-
tion P(M,t=S5). Initial conditions: A4(M,0)=8,, and
B(M,0)=0. The continuous line is a coherent QRW theory;
the dashed line is incoherent.

(5.13)

the classical average value. Interference makes quantum
particles diffuse faster.

(d) At fixed times, the QRW probability fluctuates very
strongly between neighboring points, and also for fixed
points the probability fluctuates very strongly between
successive times. The cause of these fluctuations is noth-
ing but interference.

(e) Notice also that, in clear distinction with classical
diffusion theory, in the QRW diffusion process the values
of the first few moments lose any physical meaning.

VI. N-BODY QRW PROBABILITY
FOR FERMIONS AND BOSONS

From Sec. III we have obtained, neglecting the spin
wave function, for discrete times t=N(N =1, 2,...), a
one-particle QRW wave function ¢'"(x,,7). The super-
index is to denote the initial condition (1) of that particle:

+ o0

¢N(x,0)= 3 [A(M,1e

M=—ow

ikgx

+B(M, e **11G (x,,t,M) .

(6.1)

For our QRW function (6.1) with bounded packets, the
state of the single free particle is determined at every cell
M by the specification of the two central values Tk,
(times 2s + 1 for spin 5). In the same cell M, two fermions
with the same spin can only occupy two states of different
central momentum =+k,. Full constructive (destructive)
statistical interference for bosons (fermions) will come, at
the same cell, only by having the same central momen-
tum k,. We choose the case of maximum statistical in-
teference to present in this section.

As previously proved in (5.4), the modulating ampli-
tudes [ 4 (M,t),B(M,t)] depend strongly on the specific
initial conditions [ 4 (M,0),B(M,0)]. Having a second
particle with the same energy, if different initial condi-
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tions are given, QRW equations (3.4) generate different

amplitudes, say [C(M,t),D(M,t)], and therefore a
different one-particle QRW wave function ¢'*(x,,?):
+ .
3P0y t)= S [C(M,t)e" 0™
M=—o

+D(M,1)e 021G (x,,M,1) .
6.2)

In the case of two identical free particles diffusing in
the same lattice, we have to introduce the correct symme-
try under permutation operators [10]. For bosons and
fermions we have the two-body QRW wave function,
hg\;ing one particle described by ¢'!’ and the other by
¢

W(x,,Xx,,t )E%[qS(”(xl,t VA x,,t)

+¢V(x,,2)4%x,,1)] . (6.3)

The + sign is for bosons, the — for fermions.
Using this wave function we can obtain the conditional
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two-body QRW probability density P (m,n,t|) for finding
particle 1 on cell m and particle 2 simultaneously on cell
n:

P(m,n,t|¢V(0),4(0))
:f dxlfceundX2|\I’(xl’x2,t)‘2

cell m

(6.4)

Since we have a particle permutation symmetry (an-
tisymmetry), we clearly have P(n,m,t|)=P(m,n,t|).
The quantum probability P(m,n,t|) of finding one (any)
particle at cell m and the other one simultaneously at cell
n¥ m is

P(m,n,t|)=P(m,n,t|)+P(n,m,t|)=2P(m,n,t|) . (6.5
Normalization demands that
22P(m,n,t|)=1 . (6.6)

m n

Symmetry and antisymmetry are conserved over time
[10]. So for simplicity we neglect time notation, and from
(6.3) and (6.4) we have

1
P(m,n|¢,¢P) == lfmdx,|¢‘“<x1)lzfndx2|¢‘2>(x2>|2+ I dxi[2Ge ) [ dx,¢0x,)I?

+ [f dx,¢M(x ) (x,) [ dx2¢‘2>(x2)¢“>*(x2>+c.c.]

Since wave packets centered at different cells do not overlap, we have

P(m,n|¢'V,¢6)=1L{[| A(m)|>+|B(m)|21X[|C(n)[>+|D(n) 2]+ [|C(m)|>+|D (m)|21X [| 4(n)|*+|B(n)|*]}

{[4 (m)C*(m)+B(m)D*(m)]X[C(n)A*(n)+D(n)B*(n)]+c.c.} .

Defining the row-vector amplitudes ¢'!) and ¢'?’ for each
lattice cell m,

¢ N()=[ A (m,1),B(m,1)],

$2(t)=[C(m,1),D(m,1)], €
we have finally a condensed notation for (6.8):
P(m,n,t|¢'V, )
= LG PISP 1+ 8 P90
PP 2V +c.c. 1}, (6.10)

where ¢! defines the adjoint of the vector ¢!}

As an example, consider two identical particles having
different initial conditions ¢'(0) and ¢'?X(0). Suppose
the case in which, at some time later and at the same cell
(m =n), we have the two particles with different ampli-

tudes but the same (right) direction of motion:
$V=[4(m),0], ¢»=[C(m),0]. (6.11)

Substituting (6.11) into (6.10), we have

(6.7)
(6.8)
[
P(m,m|¢(”,¢(2))
=L{l4Am)*|C(m)|>+| 4(m)|*|C(m)|?
+[ A4 (m)C*(m)C(m)A*(m)+c.c.]} (6.12)
or
2lA(m)|*lc(m)|*, B
P(m,m|¢'V,¢?)= |4 (m)IC (m)] ¢ 613

~ |0, Fermi .

As expected, the example shows that no matter what the
values of the amplitudes 4 (m) and C(m), as long as
A (m) or C(m) are not zero, two bosonic wave packets
with the same position and momentum will have max-
imum constructive interference. This is the well known
tendency for bosons to clump together in position. On
the other hand, two fermionic packets with the same po-
sition and momentum will have, in space, maximum des-
tructive interference (statistical repulsion). The 3D plot
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of Eq. (6.10) is shown in Fig. 2.

In the case of N identical free particles having the same
energy and diffusing in the same lattice, the generaliza-
tion is straightforward. We have now N initial condi-
tions, and therefore N one-body QRW wave functions
#Y(j=1,2,...,N). The N-body wave function ¥ is
given by

\I’(xl’X2, cee ,xN,t)

=‘/—_1_.1\T.!-§(i1)PP¢“)(x1,t)

X¢Hx,y,t) - 9N (xpy,t) , (6.14)

52

1 o N (2 ,
Ps1,52, - - oswrt V= SEDTTPPPGD - ¢ T4 - 40
P

For symmetry in (6.16), all permutations of
{51,585, ...,5y} give the same probability. The quantum
probability P(s,,S,, - . . ,Sy,t|) of finding one (any) parti-
cle at cell s,, any other particle simultaneously at cell s,,

etc., is given by

?(SI,S2,...,SN,tl)'__N!P(sl,Sz,...,SN,tl) . (6_17)
Normalization demands that
33 S P(sp8y - -syst=1. (6.18)
Sl S2 SN
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APPENDIX: ANALYTIC EXPRESSIONS
FOR GREEN’S FUNCTION

In this appendix we derive an exact expression for the
Green’s function $(x,?) defined in (5.7) and (5.10):

:L ™ —isx
9(x,t)——277f_7re ¢ (s,1)ds

N N

+

with g(s,2)=

We want the exact solution. First we note that the
function g (s,¢) is proportional to a Chebyshev polynomi-
al of the second kind, U, _(z). This is so because we can
rewrite the eigenvalues A as follows:

Xi=ie"‘e Fi6(s,k)

V'1—T cos*(s —k)
VT cos(s —k)

Substituting Eq. (A2) into Eq. (A1), we obtain [12]

with tanO(s,k )= (A2)
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where P is the permutation operator of the states
(1),(2),...,(N). If we define, for the one-body wave
function j, the row vector ¢‘,£)(t) at cell m,

¢D()=[ A4 (m,t),BV(m,1)], (6.15)

then the conditional N-body QRW probability density of
finding particle 1 at cell s, particle 2 at cell s,, etc., is
given by

(6.16)

S2

FIG. 2. distribution

Two-body
P(m,n,t =6). (a) is for fermions, (b) is for bosons. Initial con-

QRW  probability

ditions: A(m,0)=8,,, B(m,0)=0, C(n,0)=0, and
D(n,0)=38, ;. Notice the region m =n; fermions show statisti-
cal repulsion, bosons show clumping.
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g(s,1)= —1, ik(r—1)8in(26) (2z)! %= [ﬁ ]t_Zj[ei(x—k)+e—-i(s—k)]t—Zj
’ sind
0, t=0 Ty (2 =2))
— (i)t~ 1,ik(t—=1) 1" =(V'T) % > ;
) U,_((z), t=1. (A3) noo !t —2j—n)
i(s —k)t—2j —2n)
Next the Chebyshev polynomial U,(z) can be written as Xe ! : (A5)
(13]
AT e L LPYCT (A4)
z 20 e —2j) If we substitute Eqgs. (A4) and (AS5) into Eq. (Al), and
/ make an elementary integration, we have an expression
and using the binomial theorem for the Green’s function as follows:

—2jt—2j ,ik(2j+2n), __ —_
9(xt+1)—(l)t2(—1)1[‘/T]t B R e (A6)

=0 0 jlelt —2j—n)

Kronecker’s delta implies that $(x,¢ +1) is different from zero only if # —x =2(j +n). Since j and n are positive in-
tegers, then ¢t —x must be a positive even integer. Therefore ¢ and x must have the same parity. Under these conditions

n=(t —x —2j)/2 will be a positive integer only if 2j <t—x. Therefore from (A6) we have the final result for
G(x,t+1):

—x)/2 t—2j )
G(x,t +1)=(i)le o ) =1y [1/7] ! (=t : (A7)
j=0 t—x —2j t+x—2j
2 2
Notice that §(x,z +1) has even parity in the x variable.
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